Full Content is available to subscribers

Subscribe/Learn More  >

Coupled Thermal and Structural Parametric Analysis of TSVs in 3D Electronics

[+] Author Affiliations
Fahad Mirza, Bharathkrishnan Muralidharan, Poornima Mynampati, Dereje Agonafer

University of Texas at Arlington, Arlington, TX

Saket Karajgikar

Future Facilities Ltd.

Paper No. IMECE2010-40803, pp. 675-680; 6 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME


The convergence and miniaturization of the consumer electronic products such as cell phones and digital cameras has led to the vertical integration of packages i.e., 3-D packaging. Chip-stacking (3-D) is emerging as a powerful tool that satisfies such Integrated Circuit (IC) package requirements. 3-D technology looks to be the future of hand-held electronics; hence, making it an important research area. Stacked chips are peripherally interconnected through wires; this increases the package size and usually requires an extra “interposer” layer between the chips, causing substantial delays. Due to high package density and chip-stacking on top of each other, heat dissipation from the die becomes a concern. To overcome these thermal challenges and provide better inter-chip and chip-substrate electrical connection, Through Silicon Via (TSV) technology is being implemented in 3-D electronics. Electrical interconnection and heat dissipation improves with the number of TSVs. But, there is a trade-off; TSVs occupy the chip real estate, resulting in reduced silicon efficiency when compared to the baseline (no-TSV) scenario. Coefficient of thermal expansion (CTE) mismatch and reduced chip area causes thermal stresses and may lead to premature chip failures. This can be a major reliability issue. In this paper, a parametric study of the number of TSVs in a test vehicle (TV) consisting of 2 vertically stacked dies and TSVs (between the die and the substrate) has been performed using ANSYS WORKBENCH. A quarter symmetry model has been formulated to study the various cases as a function of number of TSVs. Each die has an area of 5.7mm2 with 0.1-mm thickness and 0.5W power rating. The TSV diameter is 50-μm each with a SiO2 insulation film of 25-μm thickness. Junction temperature and thermal resistance is determined to obtain the best case in terms of temperature distribution on the die. Furthermore, thermo-mechanical analysis is performed for all the TSV configurations and a guideline is proposed based on thermal and structural response.

Copyright © 2010 by ASME
Topics: Electronics



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In