Full Content is available to subscribers

Subscribe/Learn More  >

Stochastic Simulation of a Casimir Oscillator

[+] Author Affiliations
Farbod Khoshnoud

University of British Columbia, Vancouver, BC, Canada; California Institute of Technology, Pasadena, CA

Houman Owhadi

California Institute of Technology, Pasadena, CA

Clarence W. de Silva

University of British Columbia, Vancouver, BC, Canada

Paper No. IMECE2010-39746, pp. 635-644; 10 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME


Stochastic simulation of a Casimir Oscillator is presented in this paper. This oscillator is composed of a flat boundary of semiconducting oscillator parallel to a fixed plate separated by vacuum. In this system the oscillating surface is attracted to the fixed plate by the Casimir effect, due to quantum fluctuations in the zero point electromagnetic field. Motion of the oscillating boundary is opposed by a spring. The stored potential energy in the spring is converted into kinetic energy when the spring force exceeds the Casimir force, which generates an oscillatory motion of the moving plate. Casimir Oscillators are used as micro-mechanical switches, sensors and actuators. In the present paper, a stochastic simulation of a Casimir oscillator is presented for the first time. In this simulation, Stochastic Variational Integrators using a Langevin equation, which describes Brownian motion, is considered. Formulations for Symplectic Euler, Constrained Symplectic Euler, Stormer-Verlet and RATTLE integrators are obtained and the Symplectic Euler case is solved numerically. When the moving parts in a micro/nano system travel in the vicinity of 10 nanometers to 1 micrometer range relative to other parts of the system, the Casimir phenomenon is in effect and should be considered in analysis and design of such system. The simulation in this paper considers modeling such uncertainties as friction, effect of surface roughness on the Casimir force, and change in environmental conditions such as ambient temperature. In this manner the paper explores a realistic model of the Casimir Oscillator. Furthermore, the presented study of this system provides a deeper understanding of the nature of the Casimir force.

Copyright © 2010 by ASME
Topics: Simulation



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In