0

Full Content is available to subscribers

Subscribe/Learn More  >

Simulation and Dynamic Characterization of a 3-Layer Piezo-Actuated Valveless Micropump System

[+] Author Affiliations
Hamid SadAbadi, Arvind Chandrasekaran, Muthukuraman Packirisamy, Rolf Wuthrich

Concordia University, Montreal, QC, Canada

Paper No. IMECE2010-40704, pp. 333-337; 5 pages
doi:10.1115/IMECE2010-40704
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME

abstract

In order to design the valveless micropump with a Piezo actuator, it is essential to understand the dynamic properties of the actuating system. Besides several other considerations in designing of microfluidic systems, the efficiency of valveless micropumps also strongly depends on parameters of the actuation system including the actuation frequency. Cleary, higher displacement of the diaphragm results in higher output flow rate of the pump. Thus, studying the dynamic behavior of the actuation system forms one of the important considerations for the design of micropumps. Three different models of the actuating system for the fabricated micropump system are proposed with different boundary conditions and are simulated by finite element method using ANSYS. Comparison of the experimental results and the simulation results of the natural frequencies of the system shows that the proposed simulation method can also be now used as a tool to optimize the design of the actuation system in terms of natural frequency of the system.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In