Full Content is available to subscribers

Subscribe/Learn More  >

Robust Compensator Control of a Non-Resonant MEMS Gyroscope With Linear Quadratic Regulator

[+] Author Affiliations
Wei Cui, Xiaolin Chen, Wei Xue

Washington State University Vancouver, Vancouver, WA

Paper No. IMECE2010-38871, pp. 201-207; 7 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME


This paper presents a controller design for a four degrees-of-freedom (4-DOF) non-resonant gyroscope via the linear quadratic regulator (LQR) technique. Compared to conventional MEMS gyroscopes, non-resonant gyroscopes are less vulnerable to fabrication perturbations. However, closed-loop performance of non-resonant gyroscopes has not been investigated previously. The control of non-resonant gyroscopes involves consideration of high order systems. LQR, which achieves balances between a fast response and a low control effort, has proven to be effective for high order systems. Our simulation results show that the closed-loop 4-DOF non-resonant gyroscope presented in this paper is able to achieve faster response and higher robustness to parameter uncertainties than the open-loop device. Under the sinusoidal input, compared to an error of 11.06% for the open-loop system, the closed-loop scale factor uniformity error is reduced to 0.014% under ±10% parameter perturbations. The device performance is analyzed by the behavior modeling approach in CoventorWare. The results show that the closed-loop non-resonant gyroscope achieves better performance through the LQR. The method reported here is proven to be effective and can be used in a wide range of applications.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In