Full Content is available to subscribers

Subscribe/Learn More  >

Application of the Extended Kantorovich Method to the Static Deflection of Microplates Under Capillary Force

[+] Author Affiliations
H. Moeenfard, M. H. Kahrobaiyan, M. T. Ahmadian

Sharif University of Technology, Tehran, Iran

Paper No. IMECE2010-39517, pp. 113-119; 7 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 10: Micro and Nano Systems
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4447-2
  • Copyright © 2010 by ASME


The aim of this paper is to apply an Extended Kantorovich method (EKM) to simulate the static deflection of microplates under capillary force. The model accounts for the capillary force nonlinearity of the excitation. Starting from a one term Galerkin approximation and following the Extended Kantorovich procedure, the equations governing the microplate deflection are obtained. These equations are then solved iteratively with a rapid convergence procedure to yield the desired solution. The effects of capillary force on the pull-in phenomenon of microplates are delineated in some figures. It is shown that rapid convergence, high precision and independency of initial guess function makes the EKM an effective and accurate design tool for design optimization.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In