Full Content is available to subscribers

Subscribe/Learn More  >

On the Transition From Creeping to Inertial Flow in Arrays of Cylinders

[+] Author Affiliations
K. Yazdchi, S. Srivastava, S. Luding

University of Twente, Enschede, Netherlands

Paper No. IMECE2010-37689, pp. 767-772; 6 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4446-5
  • Copyright © 2010 by ASME


Many important natural processes involving flow through porous media are characterized by large filtration velocity. Therefore, it is important to know when the transition from viscous to the inertial flow regime actually occurs in order to obtain accurate models for these processes. In this paper, a detailed computational study of laminar and inertial, incompressible, Newtonian fluid flow across an array of cylinders is presented. Due to the non-linear contribution of inertia to the transport of momentum at the pore scale, we observe a typical departure from Darcy’s law at sufficiently high Reynolds number (Re). Our numerical results show that the weak inertia correction to Darcy’s law is not a square or a cubic term in velocity, as it is in the Forchheimer equation. Best fitted functions for the macroscopic properties of porous media in terms of microstructure and porosity are derived and comparisons are made to the Ergun and Forchheimer relations to examine their relevance in the given porosity and Re range. The results from this study can be used for verification and validation of more advanced models for particle fluid interaction and for the coupling of the discrete element method (DEM) with finite element method (FEM).

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In