0

Full Content is available to subscribers

Subscribe/Learn More  >

A Physically-Based Anisotropic Discrete Fiber Model for Fibrous Soft Tissues

[+] Author Affiliations
C. Flynn, P. M. F. Nielsen

The University of Auckland, Auckland, New Zealand

M. B. Rubin

Technion - Israel Institute of Technology, Haifa, Israel

Paper No. IMECE2010-38927, pp. 695-703; 9 pages
doi:10.1115/IMECE2010-38927
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4446-5
  • Copyright © 2010 by ASME

abstract

Physically-based fibrous soft tissue models often consider the tissue to be a collection of fibers with a continuous distribution function to represent their orientations. This study proposes a simple model for the response of fibrous connective tissues in terms of a discrete number of fiber bundles. The proposed model consists of six weighted fiber bundles orientated such that they pass through opposing vertices of an icosahedron. A novel aspect of the proposed model is the use of a simple analytical function to represent the undulation distribution of the collagen fibers. The mechanical response of the elastin fiber is represented by a neo-Hookean hyperelastic equation. A parameter study was performed to analyze the effect of each parameter on the overall response of the model. The proposed model accurately simulated the uniaxial stretching of pig skin with an 8% error-of-fit for stretch ratios up to 1.8. The model also accurately simulated the biaxial stretching of rabbit skin with a 10% error-of-fit for stretch ratios up to 1.9. The stiffness of the collagen fibers determined by the model was about 100 MPa for the rabbit skin and 900 MPa for the pig skin, which are comparable with values reported in the literature. The stiffness of the elastin fibers in the model was about 2 kPa.

Copyright © 2010 by ASME
Topics: Fibers , Soft tissues

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In