Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of Cohesive Zone and Crack Growth in Ni-Al Thin-Film Using MD-XFEM Based Approach

[+] Author Affiliations
Gaurav Singh

Birla Institute of Technology & Science, Pilani—Goa Campus, Zuarinagar, GA; Indian Institute of Science, Bangalore, KA, India

Vijay Kumar Sutrakar

ADE, Defence Research and Development Organization; Indian Institute of Science, Bangalore, KA, India

D. Roy Mahapatra

Indian Institute of Science, Bangalore, KA, India

Paper No. IMECE2010-37868, pp. 543-551; 9 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4446-5
  • Copyright © 2010 by ASME


Intermetallic alloys of Ni-Al have important applications in high temperature anti-corrosive coatings, engine and turbine related materials, and shape memory devices. Predicting failure behavior of these materials is difficult using purely continuum model, since several of the material constants are complicated functions of micro and nano-scale details. This includes solid-solid phase transformation. In the present paper, a framework for analyzing fracture in two-dimensional planar domain is developed using a molecular dynamic (MD) simulation and extended finite element method (XFEM). The framework is then applied to simulate fracture in Ni-Al thin-film. Effect of Ni Al crystallites of various sizes on the mechanical properties is analyzed using direct MD simulations. Initiation and growth of crack under slow (quasi-static) tensile loading in mode-I condition is considered. Mechanical properties at room temperature are estimated via MD simulations, which are further used in the XFEM at the continuum scale. A cohesive zone model for the macroscopic XFEM model is implemented, which directly bridges the molecular length-scale via MD framework. Numerical convergence studies are reported for mode-I crack in initially single crystal B2 Ni-Al thin film.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In