Full Content is available to subscribers

Subscribe/Learn More  >

Domain Reduction Method for Periodic Nanostructure Modeling: Gold Nanorods, Carbon Nanotubes and Graphene Applications

[+] Author Affiliations
Eduard G. Karpov

University of Illinois at Chicago, Chicago, IL

Dong Qian

University of Cincinnati, Cincinnati, OH

Paper No. IMECE2010-40541, pp. 469-475; 7 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4446-5
  • Copyright © 2010 by ASME


A domain-reduction approach for the simulation of one- and two-dimensional nanocrystalline structures is demonstrated. In this approach, the domain of interest is partitioned into coarse and fine scale regions and the coupling between the two is implemented through a multiscale interfacial boundary condition. The atomistic simulation is used in the fine scale region, while the discrete Fourier transform is applied to the coarse scale region to yield a compact Green’s function formulation that represents the effects of the coarse scale domain upon the fine/coarse scale interface. This approach facilitates the simulations for the fine scale, without the requirement to simulate the entire coarse scale domain. Robustness of the proposed domain-reduction method is demonstrated via comparison and verification of the results with benchmark data from fully atomistic simulations. Demonstrated applications include deformation of crystalline Au (111) nanorods, CNT bending and buckling, and graphene nanoindentation.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In