Full Content is available to subscribers

Subscribe/Learn More  >

Geometric Optimization of Crack Arresting Holes in an Operational Component

[+] Author Affiliations
Onome Scott-Emuakpor, Tommy George, Charles Cross

Air Force Research Laboratory, Wright-Patterson AFB, OH

Paper No. IMECE2010-37050, pp. 57-64; 8 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 9: Mechanics of Solids, Structures and Fluids
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4446-5


Crack-growth arrest is analyzed in this study with the simulation of real-life fatigue of a structure during service. Unlike conventional crack-growth arrest studies, this research does not analyze an opening mode (Mode I) crack extension from an induced crack-tip specimen. The work in this analysis focuses on designing drill-holes into a structure, without a preexisting crack, that will operate under cyclic loads. The purpose of the holes is to prevent through-crack propagation if a crack initiates during service of the structure. Prevention reduces the possibility of a phenomenon like Foreign Object Damage (FOD) by a fragment of a fractured structure in heavy operating machinery and over-looked cracks during routine inspections. The drill-hole design procedure for crack growth arrest explores the use of two, three and four-hole configurations as well as the effect of inserting hard Viton-rubber pins into each drill hole of a square plate test specimen. Each specimen configuration is geometrically designed with the following in mind: minimized the hole-to-fatigue zone stress ratio, minimize damping loss between the original and the new designs with holes and pins, and experimentally validating the theory of the crack arresting methods. The geometric optimization for the square plate specimen was developed in accordance with a vibration-based fatigue testing method for uniaxial bending, which is the benchmark method for this study.



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In