Full Content is available to subscribers

Subscribe/Learn More  >

Quasi-Variational Principles of Single Flexible Body Dynamics

[+] Author Affiliations
Haiyan Song, Jiansheng Zhou, Lifu Liang, Zongmin Liu

Harbin Engineering University, Harbin, P.R. China

Paper No. IMECE2010-38046, pp. 1099-1104; 6 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME


The theoretical analysis of flexible multi-body system is a long-term and complicated problem. So the single flexible body dynamics should be studied firstly. Quasi-variational principle of non-conservative single flexible body dynamics is established under the cross-link of particle rigid body dynamics and deformable body dynamics. Some important problems are studied in quasi-variational principle of non-conservative single flexible body dynamics. The vibration problem of unrestrained beam can be solved very well by using quasi-variational principle.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In