0

Full Content is available to subscribers

Subscribe/Learn More  >

Model-Based Adaptive Control for a Solenoid-Valve System

[+] Author Affiliations
C. ‘Nat’ Nataraj, DongBin Lee

Villanova University, Villanova, PA

Paper No. IMECE2010-39371, pp. 1009-1015; 7 pages
doi:10.1115/IMECE2010-39371
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME

abstract

In this paper, a model-based control algorithm is developed for a solenoid-valve system. The electric-driven machinery system and its sophisticated control give high levels of automation on huge systems such as ships and submarines. It is known that the characteristics between the force versus displacement and fluid dynamics are strongly nonlinear. The system has uncertainties in multiple parameters in the model, which make the system difficult to adjust to the environment and consequently require adaptation for sustainability and capability. The novelty of this research is that the uncertain nonlinear dynamics of the solenoid-valve system is simplified by formulating in dimensionless form. The non-dimensional control approach of the unknown bounded parameters which is approximately twenty parameter groups used in general adaptive control of the solenoid-butterfly valve system dramatically reduced to just four lumped parameter groups. The control objective is to the set-point of the solenoid-valve and accordingly control the angle position of the butterfly valve in spite of the complications presented by the uncertainties in the dynamic model. The estimated parameters are updated by the adaptation laws using the projection algorithm. After combining the translational and rotational dynamic models, the control input is designed by substituting the electric signal such as current from the model of electromagnetic force. Error signals of the trajectory tracking are developed for the solenoid-valve system. A closed-loop stable controller is designed based on the above error dynamics of the nonlinear solenoid-valve system utilizing Lyapunov-type stability which yields a stable result while obtaining the set-point objective.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In