Full Content is available to subscribers

Subscribe/Learn More  >

FEM Analysis of a 0.50 Caliber Rifle Barrel

[+] Author Affiliations
Gary A. Anderson, Corey M. Lanoue, Fereidoon Delfanian

South Dakota State University, Brookings, SD

Paper No. IMECE2010-40211, pp. 911-917; 7 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME


In order to ensure rifle barrels have the features of high strength, durability, and light weight, the strength analysis of the barrels under hot temperatures and pressures is very important in the design. A finite element model incorporating the plastic deformation of a typical 0.50 caliber rifle barrel is constructed to determine the stresses caused by the mechanical loads and plastic deformation. According to the simulation results, the finite element analysis is proved to be a power analysis tool for future failure analysis of firearm barrels. The method provides a power tool for analysis of firearm barrels. The projectile was accelerated to 941.7 m/s in 1.430 ms with a pressure profile that reached a maximum of 469.3 MPa. Stresses as large as 1,410 MPa along the interior of the barrel were found where the leading edge of the projectile slides along the bore, but the largest stresses at the exterior of the barrel were found where the barrel wall is thinnest near the chamber.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In