Full Content is available to subscribers

Subscribe/Learn More  >

Modeling of a Planar Microrobot Using LuGre Friction Model

[+] Author Affiliations
M. Khodabakhsh, G. R. Vossoughi, A. Kamali

Sharif University of Technology, Tehran, Iran

Paper No. IMECE2010-38782, pp. 633-639; 7 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME


Microrobots design and manufacturing has been one of interesting fields in robotics in recent years. Various legged designs have been proposed in the literature. All designs rely on friction for locomotion. In this paper the dynamic model of a planar two-legged microrobot is presented using LuGre friction model. LuGre friction model is more realistic model, reducing uncertainties of the microrobot dynamic model, providing a better prediction for both design and control applications. The proposed microrobot is driven by a piezoelectric actuator mounted between centers of two legs. One of important issues in modeling of microrobots is to determine the friction force between robot and environment. The LuGre friction model which is a more realistic and comprehensive model for friction is used to determine the friction force between legs and horizontal surface. The results of the LuGre friction based model are compared with those of the model which uses the Coulomb friction. This comparison shows effectiveness of using the LuGre friction model in predicting the dynamic behavior in these types of robots.

Copyright © 2010 by ASME
Topics: Friction , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In