0

Full Content is available to subscribers

Subscribe/Learn More  >

Modeling and Optimization of an Elliptical Shape Ultrasonic Motor Using Combination of Finite Element Method and Design of Experiments

[+] Author Affiliations
Hamed Sanikhani, Javad Akbari, Ali Akbar Darki

Sharif University of Technology, Tehran, Iran

Ali Reza Shahidi

Research Center for Science and Technology In Medicine (RCSTIM), Tehran, Iran

Paper No. IMECE2010-40074, pp. 491-496; 6 pages
doi:10.1115/IMECE2010-40074
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME

abstract

Standing-wave ultrasonic motors are a modern class of positioning systems, which are used to deliver a high precision linear or rotary motion with an unlimited stroke. The design process should be performed through an effective optimization algorithm in order to guaranty proper and efficient function of these motors. An optimization method of ultrasonic motors is proposed based on the combination of finite element method and factorial design as a design of experiments in this study. The results show the ability of this method in optimal design of ultrasonic motors especially those which have a complex structure and multi modes operation principle.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In