0

Full Content is available to subscribers

Subscribe/Learn More  >

Reduced-Order Models of Mistuned Cracked Bladed Disks

[+] Author Affiliations
Olguta Marinescu

University Dunarea de Jos of Galati, Galati, Romania; University of Michigan, Ann Arbor, MI

Bogdan I. Epureanu

University of Michigan, Ann Arbor, MI

Mihaela Banu

University Dunarea de Jos of Galati, Galati, Romania

Paper No. IMECE2010-38733, pp. 459-471; 13 pages
doi:10.1115/IMECE2010-38733
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME

abstract

Predicting the influence of cracks on the dynamics of bladed disks is a very important challenge. Cracks change the structural response, which in turn changes the crack propagation characteristics. Hence, accurate and computationally effective means to model the dynamics of cracked bladed disks and blisks is particularly crucial in applications such as prognosis, guidance for repairs, characterization after repairs, design, and structural health monitoring. Most current models of bladed disks exploit cyclic symmetry to gain computational efficiency. However, the presence of cracks and mistuning destroys that symmetry and makes computational predictions much more expensive. In this work, we propose a new reduced order modeling methodology which can speed up computations by several orders of magnitude. There are two key components of the new methodology. First, the displacements and deformations of the crack surfaces are not modeled in absolute coordinates but relative coordinates. That allows for an effective model reduction based on (fixed-interface Craig-Bampton) component mode synthesis (CMS). The use of relative coordinates allows one to define one of the components in CMS as the pristine/uncracked structure (with mistuning). This approach is used in combination with a set of accurate approximations for the constraint modes used in CMS. Second, the effects of mistuning are captured by component mode mistuning (CMM) which allows the construction of extremely efficient reduced order models for the pristine/uncracked component with mistuning. The novel proposed method is applied to a finite element model of an industrial blisk. The combined presence of mistuning and cracks is shown to have important effects. Also, the proposed approach is shown to provide accurate predictions for the overall blisk while requiring computations using single-sector models only. The influence of various parameters on the accuracy of the reduced order models is investigated. Overall, the results show a very good agreement between full finite element analyses and the proposed reduced order modeling approach.

Copyright © 2010 by ASME
Topics: Disks

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In