Full Content is available to subscribers

Subscribe/Learn More  >

Sensitivity of MEMS/NEMS Biosensors Near Twice Natural Frequency

[+] Author Affiliations
Dumitru I. Caruntu, Martin W. Knecht

University of Texas Pan American, Edinburg, TX

Paper No. IMECE2010-38007, pp. 429-434; 6 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME


Bio-MEMS/NEMS resonator sensors near twice natural frequency for mass detection are investigated. Electrostatic force along with fringe correction and Casimir effect are included in the model. They introduce parametric nonlinear terms in the system. The partial-differential equation of motion of the system is solved by using the method of multiple scales. A direct approach of the problem is then used. Two approximation problems resulting from the direct approach are solved. Phase-amplitude relationship is obtained. Numerical results for uniform electrostatically actuated micro resonator sensors are reported.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In