0

Full Content is available to subscribers

Subscribe/Learn More  >

Fragility of Chaos in Multispecies Competition Influenced by Predation

[+] Author Affiliations
Lei Zhao, Huayong Zhang, Tousheng Huang, Xinqiang Zhu

North China Electric Power University, Beijing, P.R. China

Lu Han

University of Regina, Regina, SK, Canada

Paper No. IMECE2010-40772, pp. 377-381; 5 pages
doi:10.1115/IMECE2010-40772
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME

abstract

In order to study the stability of chaotic behaviors, a nonlinear dynamical model of the competing multispecies with a predator is investigated. A series of numerical simulations is demonstrated via wave diagram and phase diagram. The results show that the chaos can change into either oscillation or ordinary equilibrium as the attacking rate of the predator increases. Moreover, chaos in the system becomes fragile and even vanishes when the attacking rate reaches 0.0186. This study also exhibits the transformation in phase diagram from a strange attractor to a stable equilibrium.

Copyright © 2010 by ASME
Topics: Chaos

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In