Full Content is available to subscribers

Subscribe/Learn More  >

Improved Mathematical Modeling of Thermal Effects in Flexural Microcantilever Resonators Dynamics

[+] Author Affiliations
Reza N. Jazar, Monir Takla

RMIT University, Melbourne, VIC, Australia

M. Mahinfalah

Milwaukee School of Engineering, Milwaukee, WI

Paper No. IMECE2010-37610, pp. 273-285; 13 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME


In a recent research the thermal dependency of material characteristics in dynamic response of microresonator systems is modeled using Lorentzian function and employing perturbation analysis. Thermal phenomena introduce two main effects: damping due to internal friction, and softening due to Young modulus-temperature relationship. The presented mathematical model provided effective equations to study the electrically actuated microbeam resonators. The mathematical model of thermal phenomena in microbeam vibration was introduced by Jazar (2009). In that analysis, using the Zener model, a positive frequency dependent damping and a negative frequency dependent stiffness terms were introduced to mode the effects of warming at resonance (Jazar 2009). In this investigation, the problem will be analyzed from a practical point of view. We introduce a better mathematical model by improving the presented model. The main difference would be including the strain distribution in the damping and stiffness model.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In