0

Full Content is available to subscribers

Subscribe/Learn More  >

Robust Gain-Scheduled Control of a UAV Based on a Polytopic Model Approximation

[+] Author Affiliations
Juan A. Ramirez, Luis B. Gutierrez

Universidad Pontificia Bolivariana, Medellín, Colombia

Rafael E. Vasquez

University of Florida, Gainesville, FL

Paper No. IMECE2010-38437, pp. 91-99; 9 pages
doi:10.1115/IMECE2010-38437
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME

abstract

This work addresses the design of a robust H ∞ gain-scheduled controller for the Condor Andino UAV (Unmanned Aerial Vehicle). A polytopic approximation of the linearization family of the nonlinear model is used for the design. Because the linearization family in the operating region derives in a linear parameter varying (LPV) description with a nonlinear dependence of a set of parameters, a least squares approximation of the system matrices is used in order to obtain affine dependence. The polytopic description is obtained from the affine LPV model when the operating range is defined choosing the varying parameter inside a convex hull. The controller is synthesized using the Bounded Real Lemma in order to guarantee quadratic H ∞ performance over the operating region. The simulation results show that the designed controller can be successfully applied to the nonlinear system over the operating range.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In