0

Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Steam Turbine Instabilities of a 100 MW Combined Cycle Power Plant

[+] Author Affiliations
José A. Becerra Villanueva, Francisco J. Jiménez-Espadafor Aguilar, Elisa Carvajal Trujillo, Ricardo Chacartegui Ramírez, Miguel Torres García

University of Seville, Seville, Spain

Paper No. IMECE2010-38506, pp. 11-19; 9 pages
doi:10.1115/IMECE2010-38506
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 8: Dynamic Systems and Control, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4445-8
  • Copyright © 2010 by ASME

abstract

An analysis of the vibration field of the steam turbine in a combined cycle power plant has been used to identify the causes of the plant rejection at commissioning. The steam turbine group consists of a high pressure turbine connected through a gear box to a medium and low pressure turbine. The high vibration level in the main steam turbine journal bearings caused the plant can’t reach nominal power 100 MW, and at approximately 43 MW the plant was rejected. Vibration is measured through proximity non-contact sensors (two per bearing at 90°), which give relative displacements between shafts and the bearing housing. Accelerometers are also located in the bearing housing. The analysis carried out included: • Field measurements; • Critical speeds dynamic model (API 684 guidelines); • Comparison with the API 684 stability test. As a result of this study, the authors found that excessive vibration was caused by a rotor instability phenomenon, “steam whirl”, and that it led to plant rejection. The main conclusions from this work are: • The vibration rejection of the combined cycle plant was due to an excess in the maximum permissible vibration value at synchronism speed, which always occurred at 43 MW. • The excessive vibration level was caused by rotor instabilities at the rotor shaft in the high-pressure steam turbine. The main vibratory energy was concentrated in a frequency range 0.38–0.41 × rpm. • The main instability phenomenon was identified as “steam whirl”. • The protocol used as a tool in the stability analysis of the turbine, defined in API 684, shows that the logarithmic decrement at the first modal frequency in the most dangerous situation (minimum gap in bearings) has a value of 0.149, which is higher than the stability threshold defined in the API 684 specification (0.1). In this way, and according to the stability analysis, the steam turbine design would be safe despite the fact that the instability problem appeared.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In