0

Full Content is available to subscribers

Subscribe/Learn More  >

Air Sparging for Mixing Non-Newtonian Slurries

[+] Author Affiliations
Judith Ann Bamberger, Carl W. Enderlin, S. Tzemos

Pacific Northwest National Laboratory, Richland, WA

Paper No. IMECE2010-40833, pp. 645-651; 7 pages
doi:10.1115/IMECE2010-40833
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 7: Fluid Flow, Heat Transfer and Thermal Systems, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4444-1
  • Copyright © 2010 by ASME

abstract

The mechanics of air sparger systems have been primarily investigated for aqueous-based Newtonian fluids. Tilton et al. (1982) [1] describes the fluid mechanics of air sparging systems in non-Newtonian fluids as having two primary flow regions. A center region surrounding the sparger, referred to as the region of bubbles (ROB), contains upward flow due to the buoyant driving force of the rising bubbles. In an annular region, outside the ROB, referred to as the zone of influence (ZOI), the fluid flow is reversed and is opposed to the direction of bubble rise. Outside the ZOI the fluid is unaffected by the air sparger system. The flow regime in the ROB is often turbulent, and the flow regime in the ZOI is laminar; the flow regime outside the ZOI is quiescent. Tests conducted with shear thinning non-Newtonian fluid in a 34-in. diameter tank showed that the ROB forms an approximately inverted cone that is the envelop of the bubble trajectories. The depth to which the air bubbles reach below the sparger nozzle is a linear function of the air-flow rate. The recirculation time through the ZOI was found to vary proportionally with the inverse square of the sparging air-flow rate. Visual observations of the ROB were made in both water and Carbopol®. The bubbles released from the sparge tube in Carbopol® were larger than those in water.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In