0

Full Content is available to subscribers

Subscribe/Learn More  >

Heat-Pipe Assisted Thermoelectric Generators for Exhaust Gas Applications

[+] Author Affiliations
L. M. Goncalves, Jorge Martins, Joaquim Antunes, Romeu Rocha, Francisco P. Brito

Universidade do Minho, Guimaraes, Portugal

Paper No. IMECE2010-40926, pp. 1387-1396; 10 pages
doi:10.1115/IMECE2010-40926
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME

abstract

Millions of hybrid cars are already running on our roads with the purpose of reducing fossil fuel dependence. One of their main advantages is the recovery of wasted energy, namely by brake recovery. However, there are other sources of wasted energy in a car powered by an internal combustion engine, such as the heat lost through the cooling system, lubrication system (oil coolers) and in the exhaust system. These energies can be recuperated by the use of thermoelectric generators (TEG) based on the Seebeck effect, which transform heat directly into electricity. To recover the energy from the hot (up to more than 700 °C) exhaust gases it is possible to use controlled heat transfer, but this would limit the heat transfer potential at partial loads, as commercialy available TEG are limited by their maximum allowable temperature (∼250°C). Therefore Heat Pipes were used as an alternative heat transfer mean, so it would be possible to retain the heat transfer potential, while controlling the maximum temperature at a reasonable level. This is the method to recover the exhaust heat presented in this work. Numerical simulations were performed to assess the potential for this design, involving internal combustion engine simulation, thermoelectric generators simulation and heat transfer modelling. Additionally, the use of variable conductance heat pipes (VCHP) is discussed, as a means of achieving TEG module maximum temperature limitation.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In