Full Content is available to subscribers

Subscribe/Learn More  >

Fluorescence Microscopy for the Measurement of the Surface Properties of the Gas Diffusion Layers of Fuel

[+] Author Affiliations
Brooks Friess, Mina Hoorfar

University of British Columbia, Kelowna, BC, Canada

Paper No. IMECE2010-39523, pp. 939-943; 5 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME


One of the major problems of current proton exchange membrane (PEM) fuel cells is water management. The gas diffusion layer (GDL) of the fuel cell plays an important role in water management since humidification and water removal are both achieved through the GDL. Various numerical models developed to illustrate the multiphase flow and transport in the fuel cell require the accurate measurement of the GDL properties (wettability and surface energy). In a recent study, the capillary penetration technique has been used to measure indirectly the wettability of the GDL based on the experimental height penetration of the sample liquid into the porous sample. In essence, a high resolution microscope/camera was used to detect the rate of penetrated height into the sample GDL. The shortcoming of this type of visualization is that it can only be used for thin hydrophilic GDL samples with zero Teflon loadings. For the thick and high Teflon loading GDLs, there is not enough contrast to detect the height of the penetrated liquid. In the real fuel cells, the GDLs are made of the micro-porous and macro-porous layers with an optimum Teflon loading. Therefore, it is required to develop a new experimental methodology capable of detecting the rate of penetration and as a result the wettability of GDLs samples used in fuel cells. In this paper, the fluorescence microscopy technique is integrated into the experimental setup of the capillary penetration method to improve the contrast between the wetted and non-wetted area. The fluorescence setup uses a powder die, dissolved in the test fluid, which is excited by a concentrated ultraviolet light illuminated in the vertical manner. To acquire the profile images of the penetrated liquid, an optical mirror was used. This new setup has the added advantage of providing a visual representation of the different regimes of penetration (e.g., the fingering effect reported for the pathways of the liquid penetrated into the GDLs) that are defined by the capillary number and mobility ratio of each fluid. Since the GDL samples used in this study are relatively hydrophobic (e.g., with 40% Teflon loadings), the pattern of liquid penetration is not uniform. Thus, an image analysis program was developed to determine the average height of penetration based on the area under the entire wetted area. The general Washburn equation was then used to fit the extracted height data and provide the average internal contact angle for each test liquid.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In