0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Design of a Multi-Megawatt Oil-Free Centrifugal Compressor for Hydrogen Gas Transportation and Delivery: Operation Beyond Supercritical Speeds

[+] Author Affiliations
Hooshang Heshmat, Andrew Hunsberger, Zhaohui Ren, Said Jahanmir, James Walton

Mohawk Innovative Technology, Inc., Albany, NY

Paper No. IMECE2010-40575, pp. 857-864; 8 pages
doi:10.1115/IMECE2010-40575
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME

abstract

Deployment of a safe, efficient hydrogen production and delivery infrastructure on a scale that can compete economically with current fuels is needed in order to realize the hydrogen economy. While hydrogen compression technology is crucial to pipeline delivery, positive displacement (PD) compressors are costly, have poor reliability and use oil, which contaminates the hydrogen. To overcome poor reliability of the PD compressor, duplicate units are installed but at substantial costs. A totally oil-free, high-speed, efficient centrifugal compressor using 4th generation compliant foil bearings and seals has been designed for hydrogen pipeline delivery. Using 6-12 megawatt drives operating at speeds to 56,000 rpm, a modular, double entry compressor was configured to deliver 500,000 kg/day at pressures greater than 8 MPa. Each of the two or three multi-stage compressor frames operate above its bending critical speed since speeds are 5 to 7 times faster than conventional compressors. To assure a structurally and economically feasible design, the rotor of each compressor spins at the same speed with blade tip velocities below 600 m/s. An iterative aerodynamic/structural/rotordynamic design process was used, including both quasi-three dimensional inviscid internal flow and Computational Fluid Dynamic (CFD) analyses. The flow field was carefully analyzed for areas of excessive diffusion, sudden velocity gradients and flow separation. Excellent correlation between the preliminary design and CFD analyses was obtained. Structural and rotor-bearing system dynamic analyses were also completed to finalize the compressor system configuration. Finite element analysis of the compressor impeller was used to verify structural integrity and fatigue limits for selected materials. Rotor-bearing system analysis was used to define acceptable bearing locations and dynamic coefficients, system critical speeds and dynamic stability. Given the high speeds, supercritical operation, and required reliability, efficiency and freedom from contaminants, compliant foil gas bearings were selected and designed. Since hydrogen will be used as the bearing lubricant for the foil bearings, substantially lower power loss than oil lubricated bearings will be experienced and the auxiliary supply or scavenge system is eliminated.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In