0

Full Content is available to subscribers

Subscribe/Learn More  >

A New Energy Frugal Paradigm for Data Centers

[+] Author Affiliations
Adrienne B. Little, Srinivas Garimella

Georgia Institute of Technology, Atlanta, GA

Paper No. IMECE2010-39442, pp. 803-811; 9 pages
doi:10.1115/IMECE2010-39442
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME

abstract

Of the total electricity consumption by the United States in 2006, more than 1% was used on data centers alone; a value that continues to rise rapidly. Of the total amount of electricity a data center consumes, at least 30% is used to cool server equipment. The present study conceptualizes and analyzes a novel paradigm consisting of integrated power, cooling, and waste heat recovery and upgrade systems that considerably lowers the energy footprint of data centers. Thus, on-site power generation equipment is used to supply primary electricity needs of the data center. The microturbine-derived waste heat is recovered to run an absorption chiller that supplies the entire cooling load of the data center, essentially providing the requisite cooling without any additional expenditure of primary energy. Furthermore, the waste heat rejected by the data center itself is boosted to a higher temperature with a heat transformer, with the upgraded thermal stream serving as an additional output of the data center with no additional electrical power input. Such upgraded heat can be used for district heating applications in neighboring residential buildings, or as process heat for commercial end uses such as laundries, hospitals and restaurants. With such a system, the primary energy usage of the data center as a whole can be reduced by about 23 percent while still addressing the high-flux cooling loads, in addition to providing a new income stream through the sales of upgraded thermal energy. Given the large and fast-escalating energy consumption patterns of data centers, this novel, integrated approach to electricity and cooling supply, and waste heat recovery and upgrade will substantially reduce primary energy consumption for this important end use worldwide.

Copyright © 2010 by ASME
Topics: Data centers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In