0

Full Content is available to subscribers

Subscribe/Learn More  >

Gas-Turbine-Cycle District Heating/Cooling-Power System With Refrigerating Exhaust

[+] Author Affiliations
Branko Stankovic

Serbian Energy Efficiency Agency, Belgrade, Serbia

Paper No. IMECE2010-37729, pp. 777-790; 14 pages
doi:10.1115/IMECE2010-37729
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME

abstract

A gas-turbine-cycle modification has been proposed, optimized primarily for (district) heating purposes, with a side-effect of obtaining gas-turbine exhaust gas at very low temperatures and potentially GHG-emission-free. Since its primary purpose is district heating without power generation, the associated gas-turbine-cycle equipment (compressors, turbines, heat exchangers) is typically arranged so that a maximum possible ratio of heat output and heat input is achieved. Whenever the heat ratio is greater than unity, that is, greater than 100% of the heat input, the exhaust gas temperature at the last gas-turbine exit is lower than atmospheric temperature. In other words, this means that it is possible to achieve greater heat output (or GT-cycle “waste heat”) than the heat input, at the “expense” of the cold GT exhaust gas (its internal energy). It is possible to arrange proposed GT-cycle modification in various configurations, such as: simple GT cycle, recuperated, intercooled, intercooled-recuperated, reheat-recuperated and intercooled-reheat-recuperated GT cycle. Maximum achievable ratio of heat output and heat input is estimated to about 1.15 (115%) and corresponding minimum GT exhaust gas temperature can be lower than the CO2 solidification temperature at atmospheric pressure (−78°C or 195 K or −108.4°F). This also means that the GT exhaust-gas stream could be entirely GHG-emission-free, without GHG-s like H2 O and/or CO2 , which could therefore be captured and sequestered in solid state, and in addition at very low refrigerating temperature. Such low-temperature GT exhaust gas could then be used for refrigeration purposes, or ultimately to refrigerate the Earth’s atmosphere and thus mitigate global-warming effects. The proposed GT-cycle heating system can operate also in the combined heating/cooling and power (CCHP) mode or in the stand-alone power generation mode using a combined-cycle configuration. In such operating modes/regimes, the heating part of the CHP system could still maintain its inherent advantages (achievement of the ratio of heat output and heat input greater than unity, potentially GHG-emission-free GT exhaust gas at refrigerating temperature levels), with CC thermal efficiencies only slightly lower than today’s typical values and with the CHP performance similar or better than modern GTCC or steam-turbine based CHP cycles.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In