0

Full Content is available to subscribers

Subscribe/Learn More  >

The Second Law of Thermodynamics and Heat Release to the Global Environment by Human Activities

[+] Author Affiliations
Kau-Fui Vincent Wong

University of Miami, Coral Gables, FL

Paper No. IMECE2010-38201, pp. 469-472; 4 pages
doi:10.1115/IMECE2010-38201
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME

abstract

It is the postulate of the current work that all human activities do add heat to the global environment. The basis used is the concept of thermodynamic entropy and the second law of thermodynamics. It has been discussed and shown that human activities do release heat to the global environment. There is no claim and not the objective in the current work to make any statement about climate change or global warming. It is suggested that all significant human-related activities have been included in the discussion, and hence the proof and deduction. The approach used is in accordance with the manner in which the laws of thermodynamics were derived, which is empirical.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In