0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Exergoeconomic Analysis Applied to a Complex Energy Conversion System

[+] Author Affiliations
F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, A. Carassai

Technische Universität Berlin, Berlin, Germany

Paper No. IMECE2010-38555, pp. 243-250; 8 pages
doi:10.1115/IMECE2010-38555
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME

abstract

Exergy-based analyses are important tools for studying and evaluating energy conversion systems. While conventional exergy-based analyses provide us with important information, further insight on the potential for improving plant components and the overall plant as well as on the interactions among components of energy conversion systems are significant when optimizing a system. This necessity led to the development of advanced exergy-based analyses, in which the exergy destruction, as well as the associated costs and environmental impact are split into avoidable/unavoidable and endogenous/exogenous parts. Based on the avoidable parts of the exergy destruction, costs and environmental impact, the potential for improvement and related strategies are revealed. This paper presents the application of an advanced exergoeconomic analysis to a combined cycle power plant. The largest parts of the unavoidable cost rates are calculated for the components constituting the gas turbine system and the low-pressure steam turbine. The combustion chamber has the second highest avoidable investment cost, while it has the highest avoidable cost of exergy destruction. In general, most of the investment costs are unavoidable, with the exception of some heat exchangers of the plant. Similarly, most of the cost of exergy destruction is unavoidable with the exception of the expander in the gas turbine system and the high-pressure and intermediate-pressure steam turbines. In general, the advanced exergoeconomic analysis reveals high endogenous values, which suggest improvement of the total plant by improving the design of the components primarily in isolation, and lower exogenous values, which suggest that the component interactions are of lower significance for this plant.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In