Full Content is available to subscribers

Subscribe/Learn More  >

Rheological Study of Algae Slurries for Minimizing Pumping Power

[+] Author Affiliations
Angel Bolhouse, Altan Ozkan, Halil Berberoglu

The University of Texas at Austin, Austin, TX

Paper No. IMECE2010-39472, pp. 57-66; 10 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME


This paper reports the rheological properties of algae slurries as a function of cell concentration. From both energy and economic perspectives, the algae slurry for producing biofuels should have rheological attributes that minimizes the pumping power requirements while delivering the maximum amount of biomass from the cultivation fields to the biorefinery. To achieve this, an accurate knowledge of the rheological properties of algae slurries as a function of cell concentration is necessary. This study measures the rheological properties of eight different concentrations of Nannochloris sp. in ASP-m nutrient media ranging from 0.5 to 80 kg dry biomass/m3 . Strain controlled dynamic frequency sweep tests, transient step rate tests, and steady rate sweep tests were performed with an ARES-TA Rheometer using a double wall couette cup and bob attachment. Shear rates ranged from 5–270 s−1 . The results show that the concentrations of 10 kg/m3 and below behaved as Newtonian fluids with a dynamic viscosity of 1.1×10−3 Pa-s while the concentrations of 20 kg/m3 and above behaved as shear thinning non-Newtonian fluids. Finally, an energy analysis was performed where a non-dimensional bioenergy transport efficiency was defined as the ratio of the energy content of transported algae biomass to the required pumping power. The results show that an optimal biomass concentration minimizing pumping requirements occurs at the highest dry biomass concentration.

Copyright © 2010 by ASME
Topics: Slurries



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In