0

Full Content is available to subscribers

Subscribe/Learn More  >

The Energy Return on Investment for Algal Biocrude: Results for a Research Production Facility

[+] Author Affiliations
Colin M. Beal, Robert E. Hebner, Michael E. Webber, Rodney S. Ruoff, A. Frank Seibert

University of Texas at Austin, Austin, TX

Paper No. IMECE2010-38244, pp. 23-42; 20 pages
doi:10.1115/IMECE2010-38244
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 5: Energy Systems Analysis, Thermodynamics and Sustainability; NanoEngineering for Energy; Engineering to Address Climate Change, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4429-8
  • Copyright © 2010 by ASME

abstract

This study is an experimental determination of the energy return on investment (EROI) for algal biocrude production at a research facility at the University of Texas at Austin (UT). During the period of this assessment, algae were grown at several cultivation scales and processed using centrifugation for harvesting, electromechanical cell lysing, and lipid separation in an enhanced coalescence membrane. The separated algal lipids represent a biocrude product that could be refined into fuel. To determine the EROI, a second order analysis was conducted, which includes direct and indirect energy flows, but does not consider capital energy expenses. At the time that the data in this study was collected, the research program was focused on improving biomass and lipid productivity. As a result, some higher efficiency processing steps were replaced by lower efficiency ones to permit other experiments. Although the production process evaluated here was energy negative, the majority of the energy consumption resulted from non-optimized growth conditions. Therefore, the experimental results do not represent an expected typical case EROI for algal fuels, but rather outline the important parameters to consider in such an analysis. The results are the first known experimental energy balance for an integrated algal biocrude production facility. A Reduced Case is presented that speculates the energy use for a similar system in commercial-scale production. In addition, an analytical model that is populated with data that have been reported in the literature is presented. For the experiments, the Reduced Case, and Literature Model, the estimated EROI was 1.3 × 10−3 , 0.13, and 0.57, respectively (refining energy requirements are not included in the experimental or Reduced Case EROI value). These results were dominated by growth inputs (96.59%, 94.15%, and 76.32% of the total energy requirement, respectively). For the experiments and Literature Model, lipid separation was the most energy intensive processing step (2.47% and 10.06%, respectively), followed by harvesting, refining, and then electromechanical cell lysing.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In