Full Content is available to subscribers

Subscribe/Learn More  >

Thermal and Structural Response of Pin Fins for Different Interface Conditions

[+] Author Affiliations
Abul Fazal M. Arif, Sulaman Pashah, Syed M. Zubair, M. Inam

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

Paper No. IMECE2010-39972, pp. 375-384; 10 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 4: Electronics and Photonics
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4428-1
  • Copyright © 2010 by ASME


Thermal management of electronic products relies on the effective dissipation of heat. Heat sink elements (e.g. a pin fin) are used for any effective heat dissipation network. Despite much optimized design of the heat sink element, the heat transfer may not be effective because the interface between power device and heat sink element is critical in the heat dissipation network. Thermal Interface Materials TIM (e.g. adhesive, solder, pads, or pastes) are employed at interface between power device and heat sink element to minimize the interface thermal resistance. However, several challenges need to be addressed before they can be successfully utilized because depending on the thermal interface conditions, the thermal stress level can attain undesirable values. This issue can be addressed by the optimization of the system design with the help of simulation methods. Generally the effects of interface conditions are studied on the thermal performance of the heat sink system whereas in this paper, a coupled-field (thermal-structural) analysis using FEM is performed to study the thermal as well as structural behavior of the heat sink system. Temperature variation and stress fields in the region of interface between pin fin and base plate are analyzed. Effects of various parameters (such as contact pressure, surface roughness, TIM thickness, and operating conditions) on the resulting thermal and structural response at the interface are presented. It has been found that different interface conditions may have comparable thermal performance with significant different stress fields at the interface. Therefore stress state must be known to ensure the structural integrity of the heat sink system for a given operating condition.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In