Full Content is available to subscribers

Subscribe/Learn More  >

Design, Modeling, and Optimization for Highly Efficient Ionic Wind-Based Cooling Microfabricated Devices

[+] Author Affiliations
Andojo Ongkodjojo, Alexis R. Abramson, Norman C. Tien

Case Western Reserve University, Cleveland, OH

Paper No. IMECE2010-40427, pp. 235-244; 10 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 4: Electronics and Photonics
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4428-1
  • Copyright © 2010 by ASME


The purpose of this work is to re-design, model and optimize a single microfabricated ionic wind pump device [1]. The device could then be employed in a three-dimensional array for use in larger-scale microchip cooling and enhanced thermal spreading applications. The innovative microfabricated air-cooling technology employs an electrohydrodynamic corona discharge (i.e. ionic wind pump) for efficient heat removal from electronic components. Our single ionic wind pump element consists of two parallel collecting electrodes between which a single emitting tip is positioned. The collector electrodes are patterned with a grid structure, which enhances the overall heat transfer coefficient and facilitates a batch and IC compatible process. Various design configurations are explored and modeled computationally to investigate their influence on the cooling phenomenon. In particular, COMSOL Multiphysics™ is employed to computationally explore the effects of collector-emitter configuration on the electrohydrodynamic phenomenon, the flow field and resulting cooling effects. Using both computational and experimental results, we estimate that a two-dimensional array of microfabricated ionic wind pumps covering approximately 2″ square should be able to dissipate greater than 2 W of heat, using about 1/5 the power input as a conventional fan.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In