Full Content is available to subscribers

Subscribe/Learn More  >

Isothermalization of an IGBT Power Electronic Chip

[+] Author Affiliations
Peng Wang, F. Patrick McCluskey, Avram Bar-Cohen

University of Maryland, College Park, MD

Paper No. IMECE2010-41019, pp. 5-15; 11 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 4: Electronics and Photonics
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4428-1
  • Copyright © 2010 by ASME


Rapid increases in the power ratings and continued miniaturization of power electronic semiconductor devices have pushed chip heat fluxes well beyond the range of conventional thermal management techniques. The heat flux of power electronic chips for hybrid electric vehicles is now at the level of 100 to 150W/cm2 and is projected to increase to 500 W/cm2 in next generation vehicles. Such heat fluxes lead to higher and less uniform IGBT chip temperature, significantly degrading the device performance and system reliability. Maintaining the maximum temperature below a specified limit, while isothermalizing the surface of the chip, have become critical issues for thermal management of power electronics. In this work, a hybrid cooling system design, which combines microchannel liquid cooling and thermoelectric solid-state cooling, is proposed for thermal management of a 10mm × 10mm IGBT chip. The microchannel heat sink is used for global cooling of the chip while the embedded thermo-electric cooler is employed for isothermalization of the chip. A detailed package level 3D thermal model is developed to explore the potential application of this concept, with an attention focused on isothermalization and temperature reduction of IGBT chip associated with variations in thermoelectric cooler sizes, thermoelectric materials, cooling system designs, and trench structures in the DBC substrate. It is found that a thin-film superlattice TEC can deliver a superior cooling performance by eliminating more than 90% of the temperature non-uniformity on 100∼200 W/cm2 IGBT chips.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In