0

Full Content is available to subscribers

Subscribe/Learn More  >

Static Load Carrying Capacity in Four Contact Point Slewing Bearings: Theoretical and Preliminary Finite Element Calculations

[+] Author Affiliations
Josu Aguirrebeitia, Mikel Abasolo, Rafael Avilés, Igor Fernandez de Bustos, Rubén Ansola

University of the Basque Country, Bilbao, Spain

Paper No. IMECE2010-38542, pp. 763-768; 6 pages
doi:10.1115/IMECE2010-38542
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4427-4
  • Copyright © 2010 by ASME

abstract

This paper presents a theoretical model to calculate the general static load-carrying capacity of four-contact-point slewing bearings under axial, radial and tilting-moment loads, compared with preliminary results obtained from a detailed parametric finite element model of the bearing. The theoretical model is based on a generalization of Sjoväll and Rumbarger’s equations and provides an acceptance surface in the load space. The finite element model is based on the modelization of the balls via nonlinear traction-only equivalent spring concept. The aim is to validate the theoretical model to be used as an acceptance curve generator for slewing bearing design.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In