0

Full Content is available to subscribers

Subscribe/Learn More  >

Gas Metal Arc Welding (GMAW) Process Optimization of a 1.4 mm Uncoated Dual Phase 980 (DP980) Joint for Automotive Body Structural Applications

[+] Author Affiliations
Ramakrishna Koganti, Adrian Elliott

Ford Motor Company, Dearborn, MI

Cindy Jiang

AET Integration, Wixom, MI

Paper No. IMECE2010-40904, pp. 647-655; 9 pages
doi:10.1115/IMECE2010-40904
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4427-4
  • Copyright © 2010 by ASME

abstract

With the increasing demand for safety, energy saving and emission reduction, Advanced High Strength Steels (AHSS) have become very attractive steels for automobile makers. The usage of AHSS steels is projected to grow significantly in the next 5–10 years with new safety and fuel economy regulations. These new steels have significant manufacturing challenges, particularly for welding and stamping. Welding of AHSS remains one of the technical challenges in the successful application of AHSS in automobile structures due to heat-affected zone (HAZ) at the weld joint. In this study Gas Metal Arc Welding (GMAW) of a lap joint configuration consisting of 1.4 mm uncoated DP980 to itself was investigated. The objective of the study was to understand the wire feed rate and torch speed influence on lap joint tensile strength (static and fatigue). A two factor, two level, full factorial design of experiment (DOE) was conducted to understand the wire feed and torch speed influence on tensile and fatigue strength of the welded joints. In order to understand the curvature effect, a center point was also included in the experiment. Based on the statistical analysis, neither factor was significant on static tensile strength, however, a two way interaction between wire feed rate and torch speed was significant on static tensile strength. Metallurgical properties of the lap joints were evaluated using optical microscopy. A significant hardness drop of 40% was observed at the HAZ.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In