0

Full Content is available to subscribers

Subscribe/Learn More  >

A Novel Approach to Process Modeling for Ultrasonic Plastics Welding

[+] Author Affiliations
M. Ying, C. K. Cheng, J. Wei

Singapore Institute of Manufacturing Technology, Singapore

Paper No. IMECE2010-38545, pp. 585-589; 5 pages
doi:10.1115/IMECE2010-38545
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4427-4
  • Copyright © 2010 by ASME

abstract

Ultrasonic plastics welding is a widely employed joining technique for thermoplastic polymer assembly nowadays. As one fusion joining method, the ultrasonic welding quality is mainly dependent on the interfacial temperature which is affected by many process factors, such as welding time, welding pressure, and vibration amplitude, as well as material properties. Many attempts have been made to understand the mechanism of creation of an ultrasonic weld but limited by the complexity of the welding process. The current study developed a novel approach to process modeling for ultrasonic plastics welding. The thermoplastic materials were characterized with time domain viscoelastic model. The energy dissipation by the viscoelasticity was converted into the heating source which caused the temperature rose. The temperature change affected the material and structure responses and eventually the dissipated energy. As such, a fully coupled thermal-stress finite element (FE) model was established to simulate the performances of the ultrasonic welding. With the fully coupled model, the temperature distribution and displacement could be solved accurately and simultaneously. Meanwhile, the interfacial temperature was experimentally measured under the different process parameters. The simulation model was further validated by the measured temperature. With this novel approach, the ultrasonic plastics welding process can be completely simulated and the process parameters can be optimized numerically.

Copyright © 2010 by ASME
Topics: Welding , Modeling , Plastics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In