0

Full Content is available to subscribers

Subscribe/Learn More  >

Tolerance Analysis of Mechanical Assemblies Based on Fuzzy - Small Degrees of Freedom (F-SDOF) Model

[+] Author Affiliations
S. Khodaygan, M. R. Movahhedy

Sharif University of Technology, Tehran, Iran

Paper No. IMECE2010-40889, pp. 519-524; 6 pages
doi:10.1115/IMECE2010-40889
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4427-4
  • Copyright © 2010 by ASME

abstract

Tolerances naturally generate an uncertain environment for design and manufacturing. In this paper, a novel fuzzy based tolerance representation approach for modeling the variations of geometric features due to dimensional tolerances is presented. The two concepts of fuzzy theory and small degrees of freedom are combined to introduce the fuzzy-small degrees of freedom model (F-SDOF). This model is suitable for tolerance analysis of mechanical assemblies with linear and angular tolerances. The presented method is compatible with the current dimensioning and tolerancing standards. The application of the proposed methodology is illustrated through presenting an example problem.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In