0

Full Content is available to subscribers

Subscribe/Learn More  >

Enhancement of the Availability of Intralogistic Systems by Applying the Smart Drive Concept

[+] Author Affiliations
Jan Eggert, Bernd Künne

TU Dortmund University, Dortmund, Germany

Paper No. IMECE2010-38477, pp. 447-455; 9 pages
doi:10.1115/IMECE2010-38477
From:
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4427-4
  • Copyright © 2010 by ASME

abstract

The determination of the overall condition of an intralogistic system is one of the significant requirements of an effective planning of maintenance activities. Conventional maintenance concepts like time-based or event-based concepts already reach their limitations. By the application of condition-based maintenance concepts the single activities take place when the reserve of abrasion of a component is nearly optimally used. The application of the smart drive concept helps to determine the condition of the system while data of stationary and mobile sensor units are gathered and evaluated. Another aspect helps to delay potential breakdowns by the adaption of certain system parameters depending on the actual system load. In that way the individual load on some components can be reduced which makes it possible to schedule an appropriate maintenance activity before the breakdown occurs. Hence the availability can be enhanced since the probability of breakdowns and unplanned maintenance activities can be reduced. To adapt system parameters based on the actual load of an intralogistic system a mathematical model is needed which describes the system behavior to a certain extent. Based on the method of DoE (Design of Experiments) such a model can be established. In the first place screening designs are necessary to determine significant factors and factor interactions. Subsequently more detailed regression experiments have to be performed to derive the mathematical model. The first step of this process (screening experiments) has been performed and will be discussed at one example in this paper while the second step which will be performed in future work (regression experiments) will be introduced and prepared. It will also be explained how the derived model will be used in a technical context at a roller conveyor as an example of an intralogistic system.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In