Full Content is available to subscribers

Subscribe/Learn More  >

Genetic Algorithm Based Optimization of Cutting Parameters in Drilling of Composite Materials

[+] Author Affiliations
Hamidreza Namazi

Nanyang Technological University, Singapore

Paper No. IMECE2010-37804, pp. 173-178; 6 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4427-4
  • Copyright © 2010 by ASME


Composite materials provide distinctive advantages in manufacture of advanced products because of attractive features such as high strength and light weight, but on the other hand machining of composite materials is difficult to carry out due to the anisotropic and non-homogeneous structure of composites and to the high abrasiveness of their reinforcing constituents. This typically results in damage being introduced into the workpiece and in very rapid wear development in the cutting tool. Conventional machining process such as drilling can be applied to composite materials, provided proper tool design and operating conditions are adopted. In this paper, A genetic algorithm (GA) based optimization procedure has been developed to optimize two factors, material removal rate; and delamination factor, using multi-objective function model with a weighted approach for the productivity, and superficial quality. An a posteriori approach was used to obtain a set of optimal solutions. An application sample was developed and its results were analyzed for several different production conditions. Finally, the obtained outcomes were arranged in graphical form and analyzed to make the proper decision for different process preferences. This paper also remarks the advantages of multi-objective optimization approach over the single-objective one.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In