Full Content is available to subscribers

Subscribe/Learn More  >

Beam-Like Major Compliant Joint Methodology for Automotive Body Structures

[+] Author Affiliations
Ali M. Shahhosseini

Indiana State University, Terre Haute, IN

Glen Prater, Jr.

University of Louisville, Louisville, KY

Paper No. IMECE2010-37343, pp. 77-83; 7 pages
  • ASME 2010 International Mechanical Engineering Congress and Exposition
  • Volume 3: Design and Manufacturing, Parts A and B
  • Vancouver, British Columbia, Canada, November 12–18, 2010
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-4427-4
  • Copyright © 2010 by ASME


One of major difficulties in developing and employing a concept model of a vehicle is to develop a simple and accurate model of joints. A vehicle joint is a subassembly formed by several members that intersect together. It is a thin-walled structure formed by overlapping metal sheets fastened by spot welds. The study of the joints has been important, because they can deform locally. This flexibility can affect noise, vibration and harshness (NVH) characteristics of a vehicle plus other structural performance characteristics under different loading conditions. The main difference between various kinds of concept models is the representation of body joints. Joints are important components of the auto body because they affect significantly, and in some cases, they even dominate, the static and dynamic behavior of a model. This paper introduces a new beam-like major compliant joint methodology. Joints are simulated with different parametric representations that present the major differences among various concept models. The development procedure of the beam-like major compliant joint is explained and the benefits of using this representation are discussed.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In