0

Full Content is available to subscribers

Subscribe/Learn More  >

Definition of Lateral Spread Displacement for Regional Risk Assessments of Pipeline Vulnerability

[+] Author Affiliations
Douglas G. Honegger

D.G. Honegger Consulting, Arroyo Grande, CA

Mujib Rahman

Terasen Gas Inc., Surrey, BC, Canada

Humberto Puebla

Golder Associates Ltd., Burnaby, BC, Canada

Dharma Wijewickreme

University of British Columbia, Vancouver, BC, Canada

Anthony Augello

Golder Associates, Inc., Irvine, CA

Paper No. IPC2010-31354, pp. 583-592; 10 pages
doi:10.1115/IPC2010-31354
From:
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 4
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4423-6 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME

abstract

Terasen Gas Inc. (Terasen) operates a natural gas supply and distribution system situated within one of the zones of the highest seismic activity in Canada. The region encompasses significant areas underlain by marine, deltaic, and alluvial soil deposits, some of which are considered to be susceptible to liquefaction and large ground movements when subjected to earthquake ground shaking. Terasen undertook an assessment of seismic risks to its transmission and key intermediate pressure pipelines in the Lower Mainland in 1994 [1]. The seismic assessment focused on approximately 500 km of steel pipelines ranging from NPS 8 to NPS 42 and operating at pressures from 1900 to 4020 kPa. The 1994 risk assessment provided the basis for detailed site-specific assessment and seismic upgrade programs to retrofit its existing system to reduce risks to acceptable levels. While the general approach undertaken in 1994 remains technically sound, advancements have been made over the past 15 years in the understanding of earthquake hazards and their impact on pipelines. In particular, estimates of the earthquake ground shaking hazard in British Columbia as published by Geological Survey of Canada (GSC) have recently been updated and incorporated into the 2005 National Building Code of Canada (NBCC). In addition, empirical methods of estimating lateral spread ground displacements have been improved as new case-history information has become available. Given these changes, Terasen decided in 2009 to reexamine the seismic risk to Terasen’s pipelines. The scope of the updated seismic risk study was expanded over that in 1994 to include pipelines on Vancouver Island and the Interior of British Columbia. For regional assessments, estimates of lateral spread displacements are necessarily based upon empirical formulations that relate displacement to variables of earthquake severity (earthquake magnitude and distance), susceptibility to liquefaction (density, grain size, fines content), and topography (distance from a river bank or ground slope). Implementing empirical formulae with the results of probabilistic seismic hazard calculations is complicated by the fact that the empirical approach requires earthquake magnitude and distance, as a parametric couple, to be related to the ground shaking severity. However, but such a relationship does not exist in the estimates of mean or modal earthquake magnitude and distance disaggregated from a probabilistic seismic hazard analysis. This paper presents an overview of the approach to regional risk assessment undertaken by Terasen and discusses the unique approach adopted for determining lateral spread displacements consistent with the probabilistic seismic hazard analysis.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In