Full Content is available to subscribers

Subscribe/Learn More  >

A Precipitation-Induced Landslide Susceptibility Model for Natural Gas Transmission Pipelines

[+] Author Affiliations
Jason P. Finley

Fugro William Lettis & Associates, Inc., Valencia, CA

David L. Slayter, Chris S. Hitchcock

Fugro William Lettis & Associates, Inc., Walnut Creek, CA

Chih-Hung Lee

Pacific Gas and Electric Company, Walnut Creek, CA

Paper No. IPC2010-31329, pp. 545-550; 6 pages
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 4
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4423-6 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME


Landslides related to heavy rainfall can cause extensive damage to natural gas transmission pipelines. We have developed and implemented a geographic information system (GIS) model that evaluates near real-time precipitation-induced landslide susceptibility. This model incorporates state-wide precipitation data and geologically-based landslide classifications to produce rapid landslide risk evaluation for Pacific Gas & Electric Company’s (PG&E) gas transmission system during winter rain storms in California. The precipitation data include pre-storm event quantitative precipitation forecasts (QPF) and post-storm event quantitative precipitation estimates (QPE) from the United States National Oceanic and Atmospheric Administration (NOAA). The geologic classifications are based on slope, susceptible geologic formations, and the locations of historic or known landslide occurrences. Currently the model is calibrated using qualitative measures. Various scientists have developed large landslide databases with associated rainfall statistics to determine rainfall thresholds that trigger landslides. With a sufficient number of landslides, we can more precisely determine minimum rainfall thresholds using similar methods.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In