0

Full Content is available to subscribers

Subscribe/Learn More  >

On the Use of the Generalized Lambda Distribution and Parametric Bootstrap Method in the Prediction of Maximum Pit Depths: Comparison With Experimental Pipeline Data

[+] Author Affiliations
L. Alfonso

Universidad Autónoma de la Ciudad de México, México, DF, México

F. Caleyo, J. M. Hallen, J. Araujo

Instituto Politécnico Nacional, México, DF, México

Paper No. IPC2010-31327, pp. 537-543; 7 pages
doi:10.1115/IPC2010-31327
From:
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 4
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4423-6 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME

abstract

The approach proposed by Najjar and coworkers for the prediction of maximum pit depth is applied and validated through direct comparison with real pipeline steel pitting corrosion data. This methodology combines the Generalized Lambda Distribution (GLD) and the Bootstrap Method (BM) in order to estimate both the maximum pit depth and confidence intervals associated with the estimation. Samples are drawn from real-life pitting corrosion data and the GLD is used to obtain modeled pit depth distributions emulating the experimental ones. In order to estimate the maximum pit depth over an N-times larger area, simulated distributions, N-times larger than the experimental ones, are generated 104 times. The deepest pit depth is extracted from each simulated bootstrap sample to obtain a dataset of 104 extreme pit-depth values. An estimate of the maximum pit depth for the N-times larger surface can be obtained from this dataset by calculating the average of the 104 extreme values. The uncertainty in the estimation is derived from the 95% confidence interval of the bootstrap estimate. In this report, the results of the application of the GLD-BM framework are compared with extreme pit depth values observed in real pitting corrosion data. The agreement between the estimated and actual maximum pit depths points to the applicability of the GLD-BM as an alternative in estimating the maximum pit depth when only a small number of samples are available. The main advantage of the combined methodology over the Gumbel method is its great simplicity, since fast and reliable estimations can be made with at least only two experimental samples.

Copyright © 2010 by ASME
Topics: Pipelines

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In