Full Content is available to subscribers

Subscribe/Learn More  >

A Model to Estimate the Failure Rates of Offshore Pipelines

[+] Author Affiliations
Vania De Stefani

BP International, Sunbury on Thames, UK

Peter Carr

E-P-Consult LLC, Houston, TX

Paper No. IPC2010-31230, pp. 437-447; 11 pages
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 4
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4423-6 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME


Pipelines are subjected to several threats which can cause failure of the line, such as external impact, mechanical defects, corrosion and natural hazards. In particular, offshore operations present a unique set of environmental conditions and adverse exposure not observed in a land environment. For example, offshore pipelines located near harbor areas and in major shipping lanes are likely to be exposed to the risk of damage from anchor and dropped object impact. Such damage may result in potential risk to people and the environment, and significant repair costs. Quantitative Risk Assessment (QRA) is a method which is often used in the oil and gas industry to predict the level of risk. In QRA calculations the frequency of an incident is often assessed by a generic failure frequency approach. Generic failure frequencies derived from local incident databases are largely used in pipeline risk assessments. As a result, risk assessments for offshore pipelines may not reflect accurately operational experience for a specific pipeline or region of operation. In addition, a better understanding of the causes and characteristics of pipeline failure should provide important information to improve inspection and maintenance activity for existing pipelines and to aid in selection of design criteria for new pipelines. This paper presents an analysis of the failure data from various pipelines databases to see if there is a common trend regarding failure rates, and failure-rate dependence on pipeline parameters. A breakdown of the causes of failure has been carried out. The effect on failure frequency of factors such as pipeline age, location, diameter, wall thickness, steel grade, burial depth, and fluid transported have been investigated and are discussed. The objective of this paper is to provide a guideline for the determination of failure frequency for offshore pipelines and to describe a new model developed for use within BP for this purpose. This model uses historical databases and predictive methods to develop failure frequencies as a function of a range of influencing parameters.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In