0

Full Content is available to subscribers

Subscribe/Learn More  >

Pipeline Leakage Recognition Based on the Projection Singular Value Features and Support Vector Machine

[+] Author Affiliations
Mingda Wang, Laibin Zhang, Wei Liang, Jinqiu Hu

China University of Petroleum, Beijing, China

Paper No. IPC2010-31087, pp. 471-476; 6 pages
doi:10.1115/IPC2010-31087
From:
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4422-9 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME

abstract

Identification of negative pressure waveform is the key of pipeline leakage detection. The feature extraction and the choice of the classifier are two main contents to solve the recognition problem. In this paper, a new feature extraction method based on the Projection Singular Value is presented. First of all, the two orthogonal singular value decomposition matrixes of the typical leakage waveform are extracted as the standard bases. Then the projection singular value features of the other pressure wave matrixes are extracted by being projected to the two standard bases. As the pipeline leakage is a small probability event, it is difficult to obtain the leakage samples. A multi-classification Support Vector Machine, which has the advantage of small sample learning, is constructed to classify these features in this paper. The field experiments indicate that the leakage detection based on this feature extraction and recognition model has a higher accuracy of leakage recognition.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In