Full Content is available to subscribers

Subscribe/Learn More  >

Repair of High Pressure Pipe Fittings Using Composite Materials

[+] Author Affiliations
Julian Bedoya, Chris Alexander

Stress Engineering Services, Inc., Houston, TX

Tommy Precht

Armor Plate, Inc., Pasadena, TX

Paper No. IPC2010-31537, pp. 289-303; 15 pages
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 3
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4422-9 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME


Pipelines and piping frequently suffer from metal loss that threatens their integrity and serviceability. Multiple repair options exist for straight sections of pipe; however, repair options for pipe fittings such as elbows and tees are typically limited to composite repair systems, or section replacement. The latter method can be costly as it often requires at least a partial shut down of the pipeline while the section is replaced. A composite repair system however, can be performed in place during operations at a greatly reduced cost. The main challenge with the composite repair system is the required demonstrated ability to restore integrity and serviceability to the same level as the original metal system. Over the past 10 years, Stress Engineering Services, Inc. has been greatly involved in evaluating the ability of many composite repair systems to restore the original pipeline structural integrity by testing methods and analysis methods. The current paper investigated the ability of the Armor Plate Pipe Wrap (APPW) system to restore the burst pressure of tee and elbow pipe fittings with 60% metal loss to that of a nominal thickness system. In this program four full scale burst tests were conducted: on 12-inch nominal pipe size (NPS) Y52 tee and elbow pipe fittings. All four fittings had 60% metal loss; two were repaired with APPW, and the other two were not repaired. Prior to burst testing, elastic plastic finite element analyses (FEA) were performed to adequately size the repair thickness. The results of the FEA calculations predicted the restoration of the burst pressures of the repaired fittings up to a 1.6% agreement with the actual burst pressure results. Furthermore, the burst pressure of the 60% metal loss tee was increased from 3,059 psi (unrepaired) to 4,617 psi, or a 51% improvement. The burst pressure of the 60% metal loss elbow was increased from 2,610 psi to 4,625 psi, or a 77% improvement. Both the analysis and testing results demonstrated that composite materials can restore the pressure integrity of corroded tee and elbow pipe fittings.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In