Full Content is available to subscribers

Subscribe/Learn More  >

Effects of Pipe Internal Surface Roughness on Decompression Wave Speed in Natural Gas Mixtures

[+] Author Affiliations
K. K. Botros, J. Geerligs

NOVA Research & Technology Center, Calgary, AB, Canada

Leigh Fletcher

Welding and Pipeline Integrity, Bright, VIC, Australia

Brian Rothwell

Brian Rothwell Consulting Inc., Calgary, AB, Canada

Philip Venton

Venton & Associates Pty Ltd., Bundanoon, NSW, Australia

Lorne Carlson

Alliance Pipeline Ltd., Calgary, AB, Canada

Paper No. IPC2010-31667, pp. 907-922; 16 pages
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 2
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4421-2 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME


The control of propagating ductile (or tearing) fracture is a fundamental requirement in the fracture control design of pipelines. The Battelle two-curve method developed in the early 1970s still forms the basis of the analytical framework used throughout the industry. GASDECOM is typically used for calculating decompression speed, and idealizes the decompression process as isentropic and one-dimensional, taking no account of frictional effects. While this approximation appears not to have been a major issue for large-diameter pipes and for moderate pressures (up to 12 MPa), there have been several recent full-scale burst tests at higher pressures and smaller diameters for which the measured decompression velocity has deviated progressively from the predicted values, in general towards lower velocities. The present research was focused on determining whether pipe diameter was a major factor that could limit the applicability of frictionless models such as GASDECOM. Since potential diameter effects are primarily related to wall friction, which in turn is related to the ratio of surface roughness to diameter, an experimental approach was developed based on keeping the diameter constant, at a sufficiently small value to allow for an economical experimental arrangement, and varying the internal roughness. A series of tests covering a range of nominal initial pressures from 10 to 21 MPa, and involving a very lean gas and three progressively richer compositions, were conducted using two specialized high pressure shock tubes (42 m long, I.D. = 38.1 mm). The first is honed to an extremely smooth surface finish, in order to minimize frictional effects and better simulate the behaviour of larger-diameter pipelines, while the second has a higher internal surface roughness. The results show that decompression wave speeds in the rough tube are consistently slower than those in the smooth tube under the same conditions of mixture composition and initial pressure & temperature. Preliminary analysis based on perturbation theory and the fundamental momentum equation indicates that the primary reason for the slower decompression wave speed in the rough tube is the higher spatial gradient of pressure pertaining to the decompression wave dynamics, particularly at lower pressure ratios and higher gas velocities. The magnitude of the effect of the slower decompression speed on arrest toughness was then evaluated by a comparison involving several hypothetical pipeline designs, and was found to be potentially significant for pipe sizes DN450 and smaller.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In