0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Fracture Speed on Ductile Fracture Resistance: Part 1—Experimental

[+] Author Affiliations
Do-Jun Shim, Gery Wilkowski

Engineering Mechanics Corporation of Columbus, Columbus, OH

Da-Ming Duan, Joe Zhou

TransCanada PipeLines Limited, Calgary, AB, Canada

Paper No. IPC2010-31310, pp. 539-545; 7 pages
doi:10.1115/IPC2010-31310
From:
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 2
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4421-2 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME

abstract

The effect of fracture speed on the ductile fracture resistance of line-pipe steels can have an important effect in the basic understanding of the toughness requirements for crack arrest. Over the last few decades, it has become recognized that the drop-weight tear test (DWTT) better represents the ductile fracture resistance than the Charpy test since it utilizes a specimen that has the full thickness of the pipe and has a fracture path long enough to reach steady-state fracture resistance. However, the fracture speed in the DWTT is typically 50 to 60 feet per second (15.2 to 18.3 m/s), whereas the fracture speed in the full-scale pipe test is 300 to 1,000 fps (91.4 to 305 m/s). Recently, the authors have extended the DWTT work and developed a modified back-slot DWTT specimen to obtain higher fracture speeds. One aspect of this modified specimen was to increase the width of DWTT sample from the standard 3-inch (76.2 mm) to 5-inch (127 mm). This was done to increase the ligament length in a relatively deep back-slotted specimen to capture more steady-state data. The initial experimental results demonstrated that this type of specimen can be used to obtain higher fracture speeds. Furthermore, the experimental results clearly showed the effect of fracture speed on the ductile fracture resistance. In this paper, to extend the work on modified back-slot DWTT specimens, the tup was instrumented to measure the load during dynamic impact. From this, the load-displacement curve, steady-state energy (or energy per area) was obtained for the modified back-slot DWTT specimens. These results were compared to those obtained from the standard 3-inch specimens. These results also clearly showed the effect of fracture speed on fracture resistance.

Copyright © 2010 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In