Full Content is available to subscribers

Subscribe/Learn More  >

Transient Evaluation for LPG and Oil Pipelines

[+] Author Affiliations
Patricia Meliande, Elson Antonio do Nascimento, Rogerio Fernandes Lacerda

Federal Fluminense University, Niterói, RJ, Brazil

Paper No. IPC2010-31323, pp. 81-89; 9 pages
  • 2010 8th International Pipeline Conference
  • 2010 8th International Pipeline Conference, Volume 2
  • Calgary, Alberta, Canada, September 27–October 1, 2010
  • Conference Sponsors: International Petroleum Technology Institute and the Pipeline Division
  • ISBN: 978-0-7918-4421-2 | eISBN: 978-0-7918-3885-3
  • Copyright © 2010 by ASME


Nowadays, anticipating and controlling transient response is a critical design activity for ensuring both safety and integrity of the operational subsea system. Predicting transient effect, commonly known as surge pressure, is of high importance for offshore industry. In order to determine the installation of protection equipments to avoid surge pressure effects, the operational teams have raised concerns, whether the system is adequately designed to protect the subsea system against possible surge pressures during the event of sudden closure of a valve. Researches, referred to transient effects, explain that is necessary to evaluate the system performance under current and desired operating conditions. The main goal of this paper is to predict the surge pressure during unforeseen closure valves at Refrigerated LPG and Gasoline (C5+ ) pipeline systems. In these systems the valves are located downstream the flowlines. Detailed computer modeling attempts to simulate the complex interactions between flowline and fluid, aiming at providing efficient flowline system integrity. These models are based on Transient Methodology which is defined for a set of nonlinear partial differential equations that relate fundamental variables with pressure head and flow velocity. The solution of differential equations has been carried out by Finite Difference Method that transforms these equations into characteristic equations. These can be accurately solved through high-speed digital computers. Flowmaster, Chicago, USA, was the software used to develop the analysis models. The software offers an advanced graphical interface to build networks and resultant graphics. The results from Flowmaster have been validated through a defined methodology that applies the Characteristics Method based on Wylie and Streeter assumptions. Simulations considering the fluid as gasoline have shown a sudden damping of pressure wave when the valve closure time was 10 seconds, leading to the restoration of the initial flow conditions. The analysis using the Method of Characteristics, however, does not exhibit this sudden damping, although a gradually reduction of fluctuations around the initial pressure are observed. The transient analysis through Flowmaster for Refrigerated LPG leads to a pressure envelope that shows a change of the flow direction triggering a cyclical process until the restoration of the initial operational conditions.

Copyright © 2010 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In